2 min read

BibTeX:学术文献引用的标准化引擎

BibTeX 是一种用于文献引用的格式,广泛应用于学术界。它通过特定的命令和结构来组织参考文献信息,如作者、标题、期刊、年份等,并能生成格式统一的参考文献列表。其核心价值在于标准化和自动化引用管理,极大地提高了学术写作的效率和规范性。

BibTeX 的标准化格式使得不同文献管理软件、排版系统(如 LaTeX)能够无缝对接,实现文献信息的导入、导出和格式转换。这种互操作性是其在学术界得以广泛普及的关键。通过 BibTeX,研究人员可以轻松管理海量文献,并快速生成符合各种出版要求的引用格式,从而将更多精力投入到研究本身。

BibTeX 的出现,标志着学术文献引用进入了结构化、可机器处理的新阶段。它不仅是撰写学术论文的有力工具,更是推动学术交流与知识传播数字化的重要基石。其简洁而强大的格式,至今仍是学术界文献管理不可或缺的一环。

Beyond GPT-5: Making LLMs Cheaper and Better via Performance-Efficiency Optimized Routing
Balancing performance and efficiency is a central challenge in large language model (LLM) advancement. GPT-5 addresses this with test-time routing, dynamically assigning queries to either an efficient or a high-capacity model during inference. In this work, we present Avengers-Pro, a test-time routing framework that ensembles LLMs of varying capacities and efficiencies, providing a unified solution for all performance-efficiency tradeoffs. The Avengers-Pro embeds and clusters incoming queries, then routes each to the most suitable model based on a performance-efficiency score. Across 6 challenging benchmarks and 8 leading models -- including GPT-5-medium, Gemini-2.5-pro, and Claude-opus-4.1 -- Avengers-Pro achieves state-of-the-art results: by varying a performance-efficiency trade-off parameter, it can surpass the strongest single model (GPT-5-medium) by +7% in average accuracy. Moreover, it can match the average accuracy of the strongest single model at 27% lower cost, and reach ~90% of that performance at 63% lower cost. Last but not least, it achieves a Pareto frontier, consistently yielding the highest accuracy for any given cost, and the lowest cost for any given accuracy, among all single models. Code is available at https://github.com/ZhangYiqun018/AvengersPro.
订阅情报